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Statistical Thermodynamics
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This chapter’s purpose, largely inspired by a textbook by Ungerer, Tavitian & Boutin [1], is to help MedeA
GIBBS and MedeA LAMMPS users understand the link between forcefield-based molecular simulation meth-
ods (Monte Carlo, molecular dynamics) and classical thermodynamics.

In contrast to quantum chemistry, the detailed electronic structure of each molecule is not considered in
molecular simulation with classical forcefields. Indeed, such complex treatment is generally unnecessary for
thermodynamic properties, as the related molecular interactions do not involve significant electronic structure
modifications. In compensation, molecular simulation can consider larger systems which often makes it
possible to derive macroscopic properties (i.e., that can be compared with measured quantities).

For systems at equilibrium, this connection is provided by the well-established framework of statistical ther-
modynamics [2], which we recall briefly in the section Statistical ensembles and partition functions. As the
distribution of energy among molecules plays a central role in statistical mechanics, we will then review
how potential energy is modeled in forcefields, see section Forcefields for Materials Simulations and section
Monte Carlo Methods. Monte Carlo Methods introduces the various types of Monte Carlo algorithms imple-
mented in MedeA GIBBS, while more practical aspects of simulation and numerical methods are addressed
in Morphology.

1 Statistical Ensembles and Partition Functions

The link between microscopic and macroscopic properties is not intuitive because fluctuations of properties
are significant in microscopic systems. It is therefore required to collect multiple snapshots of a microscopic
system for computing a meaningful average property. In statistical thermodynamics, this collection of snap-
shots is called a statistical ensemble.

A statistical ensemble is a collection of various states of the system, which differ in positions and velocities of
the component particles. The space of all possible system states, of dimension 6N for N particles, is called
the phase space.

There are several different types of statistical ensemble, depending on the type of physical system we are
investigating and the conditions in which it is placed.

[1] Philippe Ungerer, B Tavitian, and A. Boutin, Applications of Molecular Simulation in the Oil and Gas Industry: Monte Carlo Methods,
(Editions Technip, 2005).

[2] D.A. McQuarrie, Statistical Mechanics, (Harper & Row, 1975); M P Allen and D J Tildesley, Computer Simulation of Liquids, Book,
(Clarendon Press, 1987); Erwin Schrödinger, Statistical Thermodynamics, (Dover Publications, 1989); Daan Frenkel and Berend
Smit, Understanding Molecular Simulation: From Algorithms to Applications, 1st ed., (Academic Press, 1996).
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1.1 Canonical or NVT Ensemble

A system at imposed volume V and temperature T is represented by a statistical ensemble called the canoni-
cal or NVT ensemble. The number of molecules N and the global volume V are identical for all system states
belonging to the ensemble, but they differ in total energy E, which is a fluctuating variable in this ensemble.
Each state j of the canonical ensemble occurs with a probability proportional to 𝑒𝑥𝑝(−𝐸𝑗/𝑘𝐵𝑇 ) where 𝑘𝐵 is
the Boltzmann constant (𝑘𝐵 = 𝑅/𝑁𝐴, 𝑅 = 8.314𝐽/𝑚𝑜𝑙/𝐾 the gas constant and 𝑁𝐴 = 6.0222 · 1023 the
Avogadro number) and 𝐸𝑗 is the total energy (kinetic + potential) of the system in state j. Here we use the
symbols 𝐸 for total energy (kinetic and potential) and 𝑈 for the potential energy.

The Boltzmann factor 𝑒𝑥𝑝(−𝐸𝑗/𝑘𝐵𝑇 ) expresses that low-energy states are favored compared with high-
energy states. Increasing temperature broadens the energy distribution in the ensemble with the conse-
quence that the average energy is increased. A general notation used in statistical mechanics is:

𝛽 =
1

𝑘𝐵𝑇
(1)

Thus, the probability of a given state j existing in the phase space is given by:

𝑃𝑗 =
𝑒𝑥𝑝(𝛽𝐸𝑗)

𝑄𝑁𝑉 𝑇
(2)

Where

𝑄𝑁𝑉 𝑇 =
1

𝑁 !

∑︁
𝑟𝑖

∑︁
𝑝𝑖

𝑒𝑥𝑝 (−𝛽𝐸(𝑟𝑖, 𝑝𝑖)) (3)

The expression QNVT, known as the partition function, is the sum of the Boltzmann factors for all possible
different states in the phase space. The factor 1/N! originates from the possible combinations of N identical
particles corresponding to the same state. Consistently with quantum mechanics, the finite summation may
be transformed in a continuous integral:

𝑄𝑁𝑉 𝑇 =
1

ℎ3𝑁𝑁 !

∫︁
𝑟𝑖

∫︁
𝑝𝑖

𝑒𝑥𝑝 (−𝛽𝐸(𝑟𝑖, 𝑝𝑖)) 𝑑𝑟𝑖𝑑𝑝𝑖 (4)

where the factor 1/ℎ3𝑁 may be understood as the volume of an individual quantum state in the phase space
(involving the Planck constant h = 6.626 10-34 Js).

The partition function provides the link with key thermodynamic functions. In the case of the canonical
ensemble, the Helmholtz free energy A is expressed as:

𝐴 = −𝑘𝐵𝑇 𝑙𝑛𝑄𝑁𝑉 𝑇 (5)

Using this relationship, we can derive numerous properties. [3] If we have a finite collection of system states,
representative of the NVT statistical ensemble, average properties can be obtained by simple arithmetic
averaging over the n states composing the collection without explicitly computing the partition function. For
instance, the average energy is:

⟨𝐸⟩ =
1

𝑛

𝑛∑︁
𝑖=1

𝐸𝑖 (6)

Other statistical ensembles can be defined in the same way as the canonical ensemble, as summarized
below:

• If an intensive variable is fixed, the associated extensive variable fluctuates.

• If the temperature is fixed, energy fluctuates.

• If the pressure is fixed, volume fluctuates,

• If the chemical potential is fixed, the corresponding number of molecules fluctuates.

The NVT and NPT ensembles are available in both MedeA LAMMPS and MedeA GIBBS, but the Grand
Canonical Ensemble, the Osmotic Ensemble, the Semi-grand Canonical Ensemble, and the Gibbs Ensemble
are available in MedeA GIBBS only).

[3] D.A. McQuarrie, Statistical Mechanics, (Harper & Row, 1975).
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Statistical ensemble Imposed variables Associated thermody-
namic potential

Applications

Canonical ensemble N,V,T

A = E - TS
(Helmholtz free)
energy)

Phase properties
(P,H,Cv,𝜇v. . . )

Grand Canonical En-
semble

𝜇i,V,T

PV
(i.e. 𝐸−𝑇𝑆−

∑︀
𝜇𝑖𝑁𝑖 )

Adsorption in microp-
orous solids

Isothermal - isobaric en-
semble

N,P,T

G = H - TS
(Gibbs free energy)

Phase properties
𝐻,𝐶𝑝, 𝜌, 𝜇𝑣, ...

Gibbs Ensemble at im-
posed global volume (m
phases)

𝑁 = 𝑁1 + ...+𝑁𝑚 𝑉 =
𝑉1 + ... + 𝑉𝑚 T

A = E - TS
(Helmholtz free energy)

Phase equilibrium of
pure components and
mixtures

Gibbs Ensemble at
imposed pressure (m
phases)

𝑁 = 𝑁1 + ...+𝑁𝑚, P, T

G = H - TS
(Gibbs free energy)

Phase equilibrium of
mixtures

2 NPT ensemble

If we want to simulate a system at imposed pressure and temperature, we use the isothermal-isobaric en-
semble or NPT ensemble, where volume and energy are fluctuating variables. The probability of any given
state-with total energy 𝐸𝑗 and volume 𝑉𝑗 - is proportional to:

𝑒𝑥𝑝 (−𝛽𝐸𝑗 − 𝛽𝑃𝑉 ) (7)

This ensemble may be used to compute the average energy using Eq. (6) and the average volume using:

⟨𝑉 ⟩ =
1

𝑛

𝑛∑︁
𝑗=1

𝑉𝑗 (8)

2.1 Grand Canonical or 𝜇VT Ensemble

If we want to simulate adsorption isotherms, either for pure compounds or multicomponent systems, we must
be able to impose temperature and partial pressures to simulate a given point on the isotherm. For this
purpose, the most convenient statistical ensemble is the grand canonical ensemble, also termed the 𝜇VT
ensemble. At low pressure, the chemical potential 𝜇𝑖 is linked with the partial pressures 𝑃𝑖 = 𝑃𝑦𝑖 where
P is total gas pressure 𝑦𝑖 is the molar fraction of component i. A more general expression involves the
fugacities 𝑓𝑖 in the fluid phase in equilibrium with the adsorbent, which are equivalent to partial pressures in
the low-pressure limit:

𝜇𝑖 = 𝜇𝑖0 + 𝑅𝑇𝑙𝑛
𝑓𝑖
𝑃0

≈ 𝜇𝑖0 + 𝑅𝑇𝑙𝑛
𝑦𝑖𝑃

𝑃0
(9)

where 𝑃0 is a reference pressure. The chemical potential of each species appears explicitly in the probability
of each system state in the grand canonical ensemble, which is proportional to:
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𝑒𝑥𝑝 (−𝛽𝐸𝑗 + 𝛽𝑁1𝜇1 + 𝛽𝑁2𝜇2 + ...) (10)

A grand canonical simulation provides the average number of molecules ⟨𝑁𝑖⟩ in the system for every species
i. In the case of microporous adsorbents, this is the average number of adsorbed molecules. The heat of
adsorption may also be computed.

2.2 Microcanonical or NVE Ensemble

The microcanonical or NVE ensemble, in which the number of molecules, global volume, and internal energy
are fixed, is obtained by solving the equations of motion in molecular dynamics without a thermostat or a
barostat. In this ensemble, every system state has the same probability. The temperature fluctuates, and
the average value can be obtained by considering the average kinetic energy per degree of freedom of the
system:

𝑇 =
2⟨𝐾⟩
𝑘𝐵𝑁𝑓

(11)

where K is the kinetic energy of the system, expressed as a function of the masses 𝑚𝑖 and the velocities 𝑣𝑖
of its N constituent particles:

𝐾 =

𝑁∑︁
𝑖=1

𝑚𝑖𝑣
2
𝑖

2
(12)

and 𝑁𝑓 = 3𝑁 − 𝑁𝑐 is the total number of degrees of freedom, 𝑁𝑐 being the total number of independent
constraints such as imposed bond lengths or imposed bond angles.

2.3 Gibbs Ensemble

The explicit simulation of liquid-vapor interfaces, using either the NVT or NPT statistical ensemble, requires
large systems, and it is mainly used to investigate the properties of the interface itself. A more efficient
way of computing phase equilibria by molecular simulation uses the Gibbs Ensemble [4], where a separate
simulation box is used for each phase without any explicit interface. In this ensemble, both temperature and
the total number of molecules are fixed, and we can impose either global volume (i.e., the sum of phase
volumes) or pressure. As a result of transfer moves from one phase to the other, the number of molecules
displays opposite fluctuations in each phase, and chemical potentials are equal in both phases. The sketch
shows a two-phase Gibbs ensemble for a system comprising three molecular types (cyclohexane, n-butane,
and methane). The arrows illustrate the transfer of molecules from one box to the other, which is specific to
this statistical ensemble.

When pressure is imposed in the Gibbs ensemble, phase volumes fluctuate independently. Because the
phase rule limits the number of imposed intensiveparameters, this option can be used only when more than
one component is considered.

When global volume is imposed in the Gibbs ensemble, phase volumes fluctuate in opposite directions. This
option is applicable either to single or multicomponent systems. In the case of a pure component, it allows
the determination of its vapor-liquid coexistence properties.

The Gibbs ensemble is a particular case of the NVT or NPT statistical ensemble in which interface energy is
not accounted for.

Phase volumes and energies may be derived by applying the usual averaging procedure defined by Eq. (6).
Pressure may be computed for each phase from the virial equation (see next section). The computation
of pressure may be used to check that mechanical equilibrium is reached because, at equlibrium, pressure
must be equal in both phases (within the statistical uncertainties).

[4] Athanassios Panagiotopoulos, “Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New
Ensemble,” Molecular Physics 61, no. 4 (July 1, 1987): 813-826.
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3 Determination of Average Properties

The Virial equation provides the average pressure:

⟨𝑃 ⟩ =
𝑁𝑘𝐵𝑇

𝑉
+ ⟨𝑊𝑗⟩ (13)

where 𝑊𝑗 is a term called the Virial, which accounts for intermolecular interactions through the forces acting
on molecule k in the jth configuration of the ensemble:

⟨𝑊𝑗⟩ =
1

3𝑉

∑︁
𝑟𝑘 · 𝐹𝑘 (14)

where 𝑟𝑘 is the position of the molecular center of mass in configuration j. If we recall that 𝑘𝐵 = 𝑅/𝑁𝐴,
where 𝑁𝐴 is Avogadro’s number, the expression reduces to the perfect gas law (PV = RT for one mole) at
very low densities when intermolecular forces tend to zero.

The average density (in molecules per unit volume) is derived using

𝜌 =
𝑁

⟨𝑉 ⟩ (15)

This is different from the arithmetic average of densities, which has no physical sense.

In statistical ensembles where the temperature is imposed, deriving the average energy of the system through
equation (6) is straightforward. The reference state for energy corresponds to zero kinetic energy and zero
potential energy, i.e., the conditions of a dilute gas at 0 K. Once energy is known, enthalpy can be derived
through ⟨𝐻⟩ = ⟨𝐸⟩ + ⟨𝑃 ⟩𝑉 in the canonical ensemble or ⟨𝐻⟩ = ⟨𝐸⟩ + 𝑃 ⟨𝑉 ⟩ in the NPT ensemble.

The chemical potential is defined as a derivative of the Helmholtz energy:

𝜇𝑖

(︂
𝜕𝐴

𝜕𝑁𝑖

)︂
𝑉,𝑇,𝑁𝑗,𝑗 ̸=𝑖

(16)

However, it cannot be evaluated simply as an ensemble average.

For extensive properties, comparison of simulation results with macroscopic measurements is more conve-
nient when properties are expressed on a molar basis. For instance, the molar volume v may be computed
from an NPT simulation using:

𝑣 =
𝑁𝑎

𝑁
⟨𝑉 ⟩ (17)

The same conversion may be applied to other extensive variables like energy and enthalpy. Intensive vari-
ables such as pressure or chemical potential do not need any correction factor to be compared with mea-
surements, provided a consistent unit system is used.

4 Determination of Derivative Properties from Fluctuations

The amplitude of the fluctuations around the average makes it possible to determine partial derivatives of the
property considered. For instance, the standard deviation of energy in the canonical ensemble is linked with
the partial derivative of energy versus temperature, i.e., the heat capacity 𝐶𝑉 of the system:

𝐶𝑉 =

(︂
𝜕𝐸

𝜕𝑇

)︂
𝑉

=
1

𝑘𝐵𝑇 2

(︀
⟨𝐸2⟩ − ⟨𝐸⟩2

)︀
(18)

In this expression, the right-hand side represents energy fluctuations around the mean value, which can be
computed by molecular simulation. Similarly, fluctuations in volume in the NPT ensemble may be used to
obtain the compressibility coefficient:

𝛽𝑇 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

=
1

𝑘𝐵𝑇 2

(︀
⟨𝑉 2⟩ − ⟨𝑉 ⟩2

)︀
(19)

Comparable fluctuation formulae are available for other derivative properties, including the isosteric heat of
adsorption.
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4.1 Isosteric Heat of adsorption

The differential molar enthalpy of adsorption (∆Hs), also called the isosteric enthalpy of adsorption (Qst), is
defined as:

∆𝐻 = 𝐻sorbed −𝐻gas (20)

where 𝐻sorbed and 𝐻gas are the partial molar enthalpies in the sorbed and gas phases, respectively. The
enthalpy is the sum of the internal energy and the product of pressure and volume, PV. For the vapor phase,
PV is assumed to be equal to RT, and the adsorbed phase’s molecular volume is neglected. Assuming molar
kinetic energy is equal in the gas and the adsorbed state, we can express the heat of adsorption as a function
of the total molar potential energy in the gas phase and the adsorbed phase:

−∆𝐻0 = 𝑅𝑇 − 𝐸
tot
sorbed + 𝐸

tot
gas (21)

In GCMC simulations, it is equivalent to calculating -∆𝐻0 using the partial derivative of the average total
energy with respect to the average number of adsorbed molecules in both gas and adsorbed phases:

∆𝐻0 = 𝑅𝑇 −
𝜕
⟨︀
𝐸 tot

sorbed

⟩︀
𝜕 ⟨𝑁sorbed⟩

+
𝜕
⟨︀
𝐸 tot

gas

⟩︀
𝜕 ⟨𝑁gas⟩

(22)

where ⟨𝑁sorbed⟩ and ⟨𝑁gas⟩ are the average number of molecules in the adsorbed and gas phases, respec-
tively. The heat of adsorption 𝑄st can thus be calculated by the fluctuations method:

𝑄st = 𝑅𝑇 −
⟨︀
𝐸 tot

sorbed𝑁
⟩︀
−

⟨︀
𝐸 tot

sorbed

⟩︀
⟨𝑁⟩⟨︀

𝑁2
sorbed

⟩︀
− ⟨𝑁sorbed⟩2

+

⟨︀
𝐸 tot

gas𝑁
⟩︀
−

⟨︀
𝐸 tot

gas

⟩︀
⟨𝑁⟩⟨︀

𝑁2
gas

⟩︀
− ⟨𝑁gas⟩2

(23)

The heat of adsorption calculation requires a Monte Carlo simulation of the vapor phase in the Grand Canoni-
cal ensemble to determine the last part of the above equation ((23)). These simulations are usually performed
so that the number of molecules fluctuates reasonably around five or six, which often implies simulation box
dimensions of about 1,000 Å. However, usually the calculation of 𝑄st is achieved without this second simula-
tion of the vapor phase.

If the vapor phase is assumed to be ideal, the third part of the equation is equivalent to the molar intramolec-
ular energy of molecules in the vapor phase. Moreover, if internal degrees of freedom are considered not
to be affected by adsorption, the molar intramolecular energies of the vapor phase and the adsorbed phase
are equal. These approximations lead to the following expression for the heat of adsorption, proposed by
Nicholson and Parsonage:

𝑄st = 𝑅𝑇 −
⟨︀
𝐸ext

sorbed𝑁
⟩︀
−
⟨︀
𝐸ext

sorbed

⟩︀
⟨𝑁⟩

⟨𝑁2⟩ − ⟨𝑁⟩2
(24)

where
⟨︀
𝐸ext

sorbed

⟩︀
represents intermolecular interactions in the adsorbed phase.

4.2 Grid Isosteric Heat of Adsorption

Eq. (24), commondly used to determine the isosteric heat of adsorption, is based on severe approximations:
ideal gas for the fluid phase and the assumption that intramolecular energies in the vapor phase and the
adsorbed are equal. This last hypothesis is only sometimes fulfilled. Nevertheless, at low coverage, when
sorbate/sorbate interactions are feeble, the isosteric heat 𝑄st can be determined through equation (24) by
considering only the adsorbate/zeolite interactions in the intermolecular potential energy (see (25)):

𝑄𝑠𝑡,0 = 𝑅𝑇 −

⟨
𝐸grid

sobed𝑁
⟩
−

⟨
𝐸grid

sorbed

⟩
⟨𝑁⟩

⟨𝑁2⟩ − ⟨𝑁⟩2
(25)

where 𝐸grid
sorbed is the interaction energy of adsorbate and adsorbent (i.e., neglecting adsorbate-adsorbate

interactions).
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5 Possible Ways of Simulating Ensembles

The simplest way to build a statistical ensemble is to solve the equations of motion for every atom in every
molecule, accounting for intramolecular and intermolecular interactions inside the system: this way is known
as molecular dynamics. An alternate way, known as Monte Carlo simulation, consists of using statistical
methods to generate the collection of configurations with the desired probability distribution without solving
the equations. Both methods yield identical ensemble averages (this is known as the ergodicity theorem).

Newton’s equations of motion, which have to be integrated in molecular dynamics, are expressed in the form:

𝐹𝑖 = 𝑚𝑖
𝑑2𝑟𝑖
𝑑𝑡2

(26)

where ri is the position of an atom, i.e., a three-dimensional vector (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)

𝐹𝑖 is the force acting on the atom from the other atoms of the system, which :sub:‘‘ can be computed by
deriving the potential energy U versus coordinates:

𝐹𝑖 = ∇𝑈(𝑟𝑖) (27)

The solution of the equations of motion is such that total energy (i.e., the sum of kinetic and potential energy)
is constant. Therefore, molecular dynamics simulates the microcanonical or NVE ensemble unless specific
steps are taken to force energy or volume to fluctuate.

To perform a molecular dynamics calculation at imposed temperature, the kinetic energy is changed by
altering the center of mass velocities at regular intervals: this is the purpose of thermostat techniques, which
allow simulation in the NVT ensemble [5].

Molecular dynamics at imposed pressure is possible through barostat or barostat methods that allow for
volume variations [6] to obtain the correct probability distribution equation.

Simulating open ensembles (Grand Canonical and Gibbs ensemble) with molecular dynamics is difficult be-
cause molecule insertions or deletions cause discontinuities in integrating Newton’s equations. Monte Carlo
is more often used for such ensembles.

Molecular dynamics is most useful for simulating the dynamic behavior of a system, particularly its transport
properties. By transport properties, we mean here the coefficients governing the rate of mass transfer (dif-
fusion coefficients), heat transfer (thermal conductivity), or momentum transfer (viscosity). For instance, the
self-diffusion coefficient of a component in a space of dimension d can be expressed from the mean squared
displacement, according to Einstein’s expression:

𝐷 =
⟨(𝑟(𝑡) − 𝑟(𝑡0))

2⟩
2𝑑 (𝑡− 𝑡0)

(28)

Shear viscosity 𝜂 and thermal conductivity 𝜆 may also be determined using molecular dynamics through
Green Kubo expressions (see Ungerer, Nietro-Draghi, Rousseau, Ahunbay & Lachet [7] and references
therein):

𝜂 =
𝑉

𝑘𝐵𝑇

∫︁ inf

0

⟨𝜎𝑥𝑦(𝑡)𝜎𝑥𝑦(0)⟩ (29)

𝜆 =
𝑉

3𝑘𝐵𝑇

∫︁ inf

0

⟨𝐽𝑞(𝑡)𝐽𝑞(0)⟩𝑑𝑡 (30)

where 𝜎𝑥𝑦(𝑡) and 𝐽𝑞(𝑡) are pressure tensor components and heat flux. It is also possible to use non-
equilibrium molecular dynamics, in which perturbations or specific boundary conditions are imposed, to get
transport coefficients [8].

[5] Shuichi Nosé, “A Unified Formulation of the Constant Temperature Molecular Dynamics Methods,” Journal of Chemical Physics 81,
no. 1 (1984): 511. William Hoover, “Canonical Dynamics: Equilibrium Phase-Space Distributions,” Physical Review A 31, no. 3
(March 1985): 1695-1697.

[6] D Evans and G Morriss, “Isothermal-Isobaric Molecular Dynamics,” Chemical Physics 77, no. 1 (May 15, 1983): 63-66.
[7] Philippe Ungerer, Carlos Nieto-Draghi, Bernard Rousseau, Göktug Ahunbay, and Véronique Lachet, “Molecular Simulation of the

Thermophysical Properties of Fluids: From Understanding Toward Quantitative Predictions,” Journal of Molecular Liquids 134, no. 1
(May 15, 2007): 71-89.

[8] B Y Wang and P T Cummings, “Non-Equilibrium Molecular Dynamics Calculation of the Shear Viscosity of Carbon Dioxide/Ethane

v. 3.6 Copyright © 2022 Materials Design, Inc., All rights reserved.
Materials Design® and MedeA® are registered trademarks of Materials Design, Inc.

12121 Scripps Summit Dr., Ste 160 San Diego, CA 92131

7 of 8



D
O

C
U

M
E

N
TA

TI
O

N
MedeA Documentation

Mixtures,” Molecular Simulation 10, no. 1 (April 1, 1993): 1-11; RL Rowley, Statistical Mechanics for Thermophysical Property
Prediction, Prentice Hall, 1994; F Müller-Plathe and D Reith, “Cause and Effect Reversed in Non-Equilibrium Molecular Dynamics:
an Easy Route to Transport Coefficients,” Computational and Theoretical Polymer Science 9, no. 3 (1999): 203-209.

v. 3.6 Copyright © 2022 Materials Design, Inc., All rights reserved.
Materials Design® and MedeA® are registered trademarks of Materials Design, Inc.

12121 Scripps Summit Dr., Ste 160 San Diego, CA 92131

8 of 8


	Statistical Ensembles and Partition Functions
	Canonical or NVT Ensemble

	NPT ensemble
	Grand Canonical or VT Ensemble
	Microcanonical or NVE Ensemble
	Gibbs Ensemble

	Determination of Average Properties
	Determination of Derivative Properties from Fluctuations
	Isosteric Heat of adsorption
	Grid Isosteric Heat of Adsorption

	Possible Ways of Simulating Ensembles

