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Theory of Elasticity
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1 Definition of Elastic Constants

To determine the elastic constants of a crystal, a deformation of the unit cell is created by changing the
Bravais lattice vectors 𝑅 = (𝑎, 𝑏, 𝑐) of the undisturbed unit cell to 𝑅′ = (𝑎′, 𝑏′, 𝑐′) using an engineering strain
matrix 𝑒

𝑅′ = 𝑅

⎛⎝1 + 𝑒𝑥𝑥
1
2𝑒𝑥𝑦

1
2𝑒𝑥𝑧

1
2𝑒𝑦𝑥 1 + 𝑒𝑦𝑦

1
2𝑒𝑦𝑧

1
2𝑒𝑧𝑥

1
2𝑒𝑧𝑦 1 + 𝑒𝑧𝑧

⎞⎠ (1)

The deformation leads to a change of the total energy of the crystal

𝑈 =
𝐸𝑡𝑜𝑡 − 𝐸0

𝑉0
=

1

2

6∑︁
𝑖=1

6∑︁
𝑗=1

𝐶𝑖𝑗𝑒𝑖𝑒𝑗 (2)

where 𝐸0 is the total energy of the unstrained lattice, 𝑉0 is the volume of the undistorted cell and the 𝐶𝑖𝑗 are
the elements of the elastic constant matrix with a notation that follows standard convention.

Both 𝑖 and 𝑗 run from 1. . . 6 in the sequence {𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑦𝑧, 𝑥𝑧, 𝑥𝑦}. The tensor of elasticity has 36 elements,
the elastic constants, but maximally 21 of these are independent. The symmetry of the unit cell can reduce
the number of independent elastic constants for the various symmetry systems as shown in the following
table:

Table1: Number of independent elastic constants for unit cells of dif-
ferent symmetry

CRYSTAL SYSTEM ELASTIC CONSTANTS
Triclinic 21
Monoclinic 13
Orthorhombic 9
Tetragonal 6 or 7
Rhombohedral 6 or 7
Hexagonal 5
Cubic 3
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For the sake of simplicity, in the so-called Voigt notation the six directions {𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑦𝑧, 𝑧𝑥, 𝑥𝑦} are abbre-
viated by {1, 2, 3, 4, 5, 6}. The following table describes the meaning each of the 21 elastic coefficients.

Table2: The nomenclature of the 21 elastic coefficients.
ELASTIC CO-
EFFICIENT

STRAIN DIREC-
TION

STRESS DI-
RECTION

TYPE OF STRAIN VS STRESS

𝐶11 𝑥𝑥 𝑥𝑥 Uniaxial stress in 𝑥-direction due to uniaxial
strain in 𝑥-direction

𝐶12 𝑥𝑥 𝑦𝑦 Uniaxial stress in 𝑦-direction due to uniaxial
strain in 𝑥-direction

𝐶13 𝑥𝑥 𝑧𝑧 Uniaxial stress in 𝑧-direction due to uniaxial
strain in 𝑥-direction

𝐶14 𝑥𝑥 𝑦𝑧 Shear stress in the 𝑦-𝑧-plane due to uniaxial
strain in 𝑥-direction

𝐶15 𝑥𝑥 𝑧𝑥 Shear stress in the 𝑥-𝑧-plane due to uniaxial
strain in 𝑥-direction

𝐶16 𝑥𝑥 𝑥𝑦 Shear stress in the 𝑥-𝑦-plane due to uniaxial
strain in 𝑥-direction

𝐶22 𝑦𝑦 𝑦𝑦 Uniaxial stress in 𝑦-direction due to uniaxial
strain in 𝑦-direction

𝐶23 𝑦𝑦 𝑧𝑧 Uniaxial stress in 𝑧-direction due to uniaxial
strain in 𝑦-direction

𝐶24 𝑦𝑦 𝑦𝑧 Shear stress in the 𝑦-𝑧-plane due to uniaxial
strain in 𝑦-direction

𝐶25 𝑦𝑦 𝑧𝑥 Shear stress in the 𝑥-𝑧-plane due to uniaxial
strain in 𝑦-direction

𝐶26 𝑦𝑦 𝑥𝑦 Shear stress in the 𝑥-𝑦-plane due to uniaxial
strain in 𝑦-direction

𝐶33 𝑧𝑧 𝑧𝑧 Uniaxial stress in 𝑧-direction due to uniaxial
strain in 𝑧-direction

𝐶34 𝑧𝑧 𝑦𝑧 Shear stress in the 𝑦-𝑧-plane due to uniaxial
strain in 𝑧-direction

𝐶35 𝑧𝑧 𝑧𝑥 Shear stress in the 𝑥-𝑧-plane due to uniaxial
strain in 𝑧-direction

𝐶36 𝑧𝑧 𝑥𝑦 Shear stress in the 𝑥-𝑦-plane due to uniaxial
strain in 𝑧-direction

𝐶44 𝑦𝑧 𝑦𝑧 Shear stress in the 𝑦-𝑧-plane due to shear
strain in the 𝑦-𝑧-plane

𝐶45 𝑦𝑧 𝑧𝑥 Shear stress in the 𝑧-𝑥-plane due to shear
strain in the 𝑦-𝑧-plane

𝐶46 𝑦𝑧 𝑥𝑦 Shear stress in the 𝑥-𝑦-plane due to shear
strain in the 𝑦-𝑧-plane

𝐶55 𝑧𝑥 𝑧𝑥 Shear stress in the 𝑧-𝑥-plane due to shear
strain in the 𝑧-𝑥-plane

𝐶56 𝑧𝑥 𝑥𝑦 Shear stress in the 𝑥-𝑦-plane due to shear
strain in the 𝑧-𝑥-plane

𝐶66 𝑥𝑦 𝑥𝑦 Shear stress in the 𝑥-𝑦-plane due to shear
strain in the 𝑥-𝑦-plane

2 Calculation of Elastic Constants

The simplest case by far is the cubic system where there are only three independent constants, 𝐶11, 𝐶12,
and 𝐶44. We use this case to illustrate the manner in which the stiffness matrix elements may be determined
from strain fields of the form of Eq. (1). If the applied engineering strain is 𝑒𝑥𝑥 = 𝑒 with all other 𝑒𝑖𝑗 equal to
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zero, the energy change is 𝑈 = 𝐶11
𝑒2

2
. This allows a unique determination of 𝐶11. If 𝑒𝑦𝑧 = 𝑒𝑧𝑦 = 𝑒

2 , with

all other strain components zero, then 𝑈 = 𝐶44
𝑒2

2 and we have an independent determination of 𝐶44. The
bulk modulus, 𝐵, is the response to a uniform compression so applying the strain field 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = 𝑒𝑧𝑧 = 𝑒

allows the computation of 𝐵 via the relation 𝑈 = 𝐵𝑒2

2 . Similarly, the shear modulus can be calculated by
using the strain field 𝑒𝑧𝑧 = 𝑒; 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = − 𝑒

2 , whereupon 𝑈 = 3𝐶 ′ 𝑒2
2 . Finally, the off-diagonal stiffness

matrix element 𝐶12 can be calculated using one or other of the relations

𝐵 =
1

3
(𝐶11 + 2𝐶12) (3)

and

𝐶 ′ =
1

2
(𝐶11 − 𝐶12) (4)

Using both of these relations provides a useful independent check on the accuracy of the computation. A
symmetry-general formulation of the calculation of elastic constants from total energy calculations is given by
Le Page & Saxe [1].

2.1 Computational Aspects

The current implementation in MedeA is based on stress [2]. VASP calculates the stress tensor, i.e. the
derivatives of the total energy of the cell with respect to changes of the 6 lattice parameters (cell lengths and
angles), using analytic expressions. With a single value for the amount of distortion for each of the necessary
engineering strains, it is possible to obtain the elastic constants. For simplicity, the amount of distortion is
called “strain” in the VASP interface. A good value for the strain is 2%. If this value is too small the changes
in the stress may be too small for accurate tracking. If e is too large, anharmonicity of the energy may play a
role. Several strains can be used to get more points for the fitting procedure involved in the calculation of the
elastic constants, thus leading to a higher numerical stability.

Hint: The elastic constants can be calculated for the equilibrium structure (at zero pressure) of a crystal,
which is the usual case, or for distorted lattices. To ensure that the equilibrium structure does correspond
to zero strain, the initial optimization of the theoretical cell parameters must be made with extremely high
accuracy. In particular, for metallic systems a fine k-mesh (k-spacing of about 0.2/Å) and the tetrahedron
integration scheme should be used. The geometry convergence criterion should be 0.01 eV/Å and the SCF
convergence criterion needs to be set at 1.0E-06 or 1.0E-07.

Experimental values for the lattice constants, even where these are available, should not be used because
the theoretical lattice will be in a state of strain for these values. This is because in the first instance, theory,
and experiment will not agree exactly and in the second, the experimental error is unknown and probably of
the same order as the strain field one needs to apply.

3 Polycrystalline Materials: Voigt-Reuss-Hill Method

The stiffness matrix calculated as above refers to the perfect lattice. However, approximate values referring
to polycrystalline samples that take into account orientational disorder can be estimated from the single
crystal data if one assumes that the elastic behavior is determined by the individual crystallites and not grain
boundary effects. A thorough analysis of this issue can be found in a paper by Anderson [3]. The basic
method, the Voigt-Reuss-Hill method, evolves from the expression for the shear modulus, 𝐺,

𝐺𝐻𝑖𝑙𝑙 =
1

2
[𝐺𝑉 𝑜𝑖𝑔𝑡 + 𝐺𝑅𝑒𝑢𝑠𝑠] (5)

[1] Y. Le Page and P. Saxe, Symmetry-General Least-Squares Extraction of Elastic Coefficients From Ab Initio Total Energy Calculations,
Phys. Rev. B 63, 174103 (2001).

[2] Y. Le Page and P. Saxe, Symmetry-General Least-Squares Extraction of Elastic Data for Strained Materials From Ab Initio Calcula-
tions of Stress, Phys. Rev. B 65, 104104 (2002).

[3] O. L. Anderson, A Simplified Method for Calculating the Debye Temperature From Elastic Constants, J. Phys. Chem. Solids 24, 909
(1963).
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For cubic lattices, the Voigt and Reuss approximations for the shear modulus, 𝐺𝑉 𝑜𝑖𝑔𝑡 and 𝐺𝑅𝑒𝑢𝑠𝑠, are:

𝐺𝑉 𝑜𝑖𝑔𝑡 =
1

5
(𝐶11 − 𝐶12 + 3𝐶44) (6)

and

𝐺𝑅𝑒𝑢𝑠𝑠 =
5

4(𝑆11 − 𝑆12) + 3𝑆44
(7)

where 𝑆 is the compliance matrix (i.e. the inverse matrix to 𝐶) and, therefore, the arithmetic mean should give
a better estimate of 𝐺 than either approximation. Checks by Anderson showed this to be true. Since the bulk
moduli of the perfect crystal and a mono-phase polycrystal are the same, elastic data for the polycrystalline
phase amount just to using the shear modulus as given by (5), (6), (7) in place of the value for the perfect
crystal.

Once 𝐵 and 𝐺 are determined, Poisson’s ratio, 𝜎, and Young’s modulus, 𝑌 , are given by the standard
formulae of elasticity

𝜎 =
1

2

𝐵 − 2
3𝐺

2𝐵 + 1
3𝐺

(8)

and

𝑌 =
9𝐵

1 + 3𝐵
𝐺

(9)

With the Bulk and Young’s moduli, the Longitudinal modulus (or the P-wave modulus) can be estimated:

𝑀 =
3𝐵(3𝐵 + 𝑌 )

9𝐵 − 𝑌
(10)

Correspondingly, the mean values for the transverse and longitudinal sound velocities 𝑣𝑡 and 𝑣𝑙 are given in
terms of the elastic moduli and the mean density 𝜌 by

𝑣𝑡 =

√︃
𝐺

𝜌

and

𝑣𝑙 =

√︃
𝐵 + 4

3

𝜌
(11)

Finally, the mean sound velocity 𝑣𝑚 is

𝑣𝑚 =

(︂
1

3

(︂
2

𝑣3𝑡
+

1

𝑣3𝑙

)︂)︂
(12)

4 Thermal Expansion and Heat Capacity

In the discussion in the previous sections, temperature played no role and the computation of the elastic con-
stants referred to zero temperature. For a harmonic lattice the mean lattice parameters and elastic constants
are independent of temperature. The observed temperature dependence of these quantities evolves from
anharmonic behavior of the energy, which is why the computation of the coefficient of thermal expansion is
one degree more difficult than the computation of the zero temperature elastic constants. The foundation
for the computation of thermal corrections to lattice parameters was laid down by Grüneisen [4], remarkably,
before the widespread acceptance of quantum mechanics! While at the time of Grüneisen even the sim-
plest computation was beyond the capacity of hand calculators, today it is possible to implement Grüneisen’s
theory, again using DFT as a generator of energies and forces, and the results can be very spectacular.

The full implementation of Grüneisen’s theory requires evaluation of the material’s phonon spectra and the
derivatives of the individual phonon frequencies with respect to the cell parameters. However, there is a
lower level of theory, the Grüneisen-Debye approximation, that allows computation of the thermal expansion

[4] E. Grüneisen, Zustand des festen K&ouml;rpers, in: Thermische Eigenschaften der Stoffe, Handbuch Der Physik, (Springer Berlin,
Heidelberg, 1928).
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coefficient with essentially no more effort than the elastic constants. In fact, for a cubic material, the only
additional information to the elastic constants that is required is an averaged Grüneisen constant, 𝛾𝐺. As
a first step, the Grüneisen constant could be set to a fixed value, e.g. to 2. The next step, could be the
determination of 𝛾𝐺 from the pressure-volume, or internal energy-volume equation of state. A convenient
approximation that incorporates 𝛾𝐺 as a parameter is [5]

𝐸(𝑉 ) =
𝐵𝑉0

5
6 − 𝛾𝐺

(︂
𝑉

𝑉0

)︂ 5
6−𝛾𝐺

(︂
𝑙𝑛

𝑉

𝑉0
− 1

5
6 − 𝛾𝐺

)︂
+ 𝐸inf (13)

where 𝑉0 is the equilibrium volume. Since 𝛾𝐺 is essentially the third derivative of 𝐸(𝑉 ), the computation of
this function must be carried out with high accuracy and great care, which is feasible.

Once 𝛾𝐺 is obtained, the only other input required to compute the thermal expansion coefficient is the Debye
temperature, which is determined by exploiting its relationship to the sound velocity i.e.

𝜃𝐷 =
~
𝑘𝐵

(︂
6𝜋2𝑞

𝑉0

)︂ 1
3

𝑣𝑚 (14)

where 𝑞 is the number of atoms in the unit cell, 𝑉0 its volume, and ~ and 𝑘𝐵 are the Planck and Boltzmann
constants, respectively. The lattice contribution to the specific heat capacity, 𝐶𝑉 , as a function of temperature,
𝑇 , can then be calculated via (see, for example, Mayer [5])

𝐶𝑉 (𝑇 ) = 9𝑞𝑘𝐵

(︂
𝑇

𝜃𝐷

)︂3 ∫︁ 𝑥𝐷

0

𝑥4 𝑒𝑥

(𝑒𝑥− 1)2
𝑑𝑥 (15)

where 𝑋𝐷 =
𝜃𝐷
𝑇

and the linear thermal expansion coefficient 𝛼𝐿 is given via the standard relation [6]

𝛼𝐿(𝑇 ) =
1

3
𝛾𝐺

𝐶𝑉 (𝑇 )

𝐵𝑉0

(16)

5 Isotropic Systems

In the isotropic regime, there are only two independent moduli and ,e.g., the Young modulus 𝐸 can be
expressed from Bulk 𝐾, Shear 𝐺 modulus, Poisson ratio 𝜈, Lamé’s first coefficient 𝜆 or P-wave modulus 𝑀
with the various relationships from below:

The relationship between moduli and the elastic and compliance matrices is simple:

𝐶11 = 𝑀, 𝐶12 = 𝜆, 𝐶44 = 𝐺 and 𝑆11 =
1

𝐸
, 𝑆12 =

𝜈

𝐸
, 𝑆44 =

1

𝐺
(17)

[5] B Mayer, H Anton, E Bott, M Methfessel, J Sticht, J. Harris, and P. C. Schmidt, Ab-Initio Calculation of the Elastic Constants and
Thermal Expansion Coefficients of Laves Phases, Intermetallics 11, 23 (2003).

[6] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt-Saunders, 1976.
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6 Elastic Constants for Disordered Cubic Systems

When reporting elastic data for a disordered structure, one can take inspiration from the averaging by Voigt
and Reuss and “effective” coefficients for a simplified, anisotropic cubic system:

𝐶11 =
𝐶11 + 𝐶22 + 𝐶33

3
𝑆11 =

𝑆11 + 𝑆22 + 𝑆33

3

𝐶12 =
𝐶23 + 𝐶13 + 𝐶12

3
𝑆12 =

𝑆23 + 𝑆13 + 𝑆12

3

𝐶44 =
𝐶44 + 𝐶55 + 𝐶66

3
𝑆44 =

𝑆44 + 𝑆55 + 𝑆66

3

(18)

This averaging is justified, as we can recreate the two matrices (in the simple anisotropic, cubic case) from
the polycrystalline moduli and the Zener anisotropy ratio 𝐴, which is independent of whether Voigt or Reuss
averaging is chosen.

𝑉 𝑜𝑖𝑔𝑡 𝑅𝑒𝑢𝑠𝑠

𝐾𝑉 =
𝐶11 + 2𝐶12

3
𝐾𝑅 =

1

3𝑠11 + 6𝑠12

𝐺𝑉 =
𝐶11 − 𝐶12 + 3𝐶44

5
𝐺𝑅 =

5

4𝑠11 − 4𝑠12 + 3𝑠44

(19)

And back from moduli to elastic matrix and compliance

𝐶11 = 𝐾 +
10

3𝐺𝑉
− 10𝐺𝑉

2𝐴 + 3
𝑆11 =

1

9𝐾𝑅
+

6

6𝐺𝑅
− 5𝐴

2𝐺𝑅(2 + 3𝐴)

𝐶12 = 𝐾 − 5

3𝐺𝑉
− 5𝐺𝑉

2𝐴 + 3
𝑆12 =

1

9𝐾𝑅
− 5

12𝐺𝑅
+

5𝐴

4𝐺𝑅(2 + 3𝐴)

𝐶44 =
5𝐺𝑉

2𝐴 + 3
𝑆44 =

5𝐴

𝐺𝑅(2 + 3𝐴)

(20)

7 Hashin-Shtrikman bounds for cubic systems

Voigt [7] (1928) averaged the elastic stiffnesses (𝐶𝑖𝑗) over all space. Reuss [8] (1929) averaged the elastic
compliances (𝑆𝑖𝑗). Hill [9] (1952) showed that these averaged values are the least upper bound and the
greatest lower bound, respectively, for the aggregate.

The Voigt and Reuss averages are given by:

𝑉 𝑜𝑖𝑔𝑡 𝑅𝑒𝑢𝑠𝑠

𝐶11 =
𝐶11 + 𝐶22 + 𝐶33

3
𝑆11 =

𝑆11 + 𝑆22 + 𝑆33

3

𝐶12 =
𝐶23 + 𝐶13 + 𝐶12

3
𝑆12 =

𝑆23 + 𝑆13 + 𝑆12

3

𝐶44 =
𝐶44 + 𝐶55 + 𝐶66

3
𝑆44 =

𝑆44 + 𝑆55 + 𝑆66

3

𝐾𝑉 =
𝐶11 + 2𝐶12

3
𝐾𝑅 =

1

3𝑆11 + 6𝑆12

𝐺𝑉 =
𝐶11 − 𝐶12 + 3𝐶44

5
𝐺𝑅 =

5

4𝑆11 − 4𝑆12 + 3𝑆44

(21)

[7] W. Voigt, Lehrbuch Der Kristallphysik (Mit Ausschluss Der Kristalloptik), (Teubner, Leipzig, 1928).
[8] A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizit&auml;tsbedingung f&uuml;r Einkristalle, Z. Ang.

Math. Mech. 9, 49 (1929).
[9] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc.. Sect. A 65, 349 (1952).
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Hashin and Shtrikman [10] showed that the Voigt and Reuss bounds could be improved, and they developed
expressions for the corresponding bounds of aggregates of cubic crystals. As it turns out, the difference
between the upper and lower bounds for cubic crystals is improved by at least an order of magnitude for most
materials. For a single-phase aggregate of a cubic material, the bulk modulus, 𝐾, is given unambiguously by

𝐾 =
1

3
(𝐶1 + 2𝐶12) (22)

And the rigidity is bounded by

𝐺*
1 = 𝐺1 +

3
5

𝐺2−𝐺1
− 4𝛽1

𝐺*
2 = 𝐺2 +

2
5

𝐺1−𝐺2
− 6𝛽2

𝐺1 =
1

2
(𝐶11 − 𝐶12) 𝐺2 = 𝐶44

𝛽1 = − 3(𝐾 + 2𝐺1)

5𝐺1(3𝐾 + 4𝐺1)
𝛽2 = − 3(𝐾 + 2𝐺2)

5𝐺2(3𝐾 + 4𝐺2)

= − 2

15

4𝐶11 − 𝐶12

𝐶11(𝐶11 − 𝐶12)
= − 𝐶11 + 2𝐶12 + 6𝐶44

5𝐶44(𝐶11 + 2𝐶12 + 4𝐶44)

(23)

The factors 𝐺1 and 𝐺2 are no coincidence, remember that in isotropic elasticity, the shear modulus 𝐺 = 𝐶44,
which turns up here as 𝐺2. The same ingredients appear in Zener’s anisotropy coefficient 𝐴, which can be
written as

𝐴 =
𝐺2

𝐺1
=

2𝐶44

𝐶11 − 𝐶12
(24)

This also determines which of the two values is the upper and lower bound:

𝐴 < 1 : 𝐺𝐻 = 𝐺*
1 𝐺𝑆 = 𝐺*

2

𝐴 = 0 : 𝐺𝐻 = 𝐺𝑆 = 𝐺𝐻𝑖𝑙𝑙

𝐴 > 1 : 𝐺𝐻 = 𝐺*
2 𝐺𝑆 = 𝐺*

1

(25)

The larger term of 𝐺*
1 and 𝐺*

2 is termed the Hashin rigidity, 𝐺𝑆 , the smaller Shtrikman rigidity, 𝐺𝐻 . These
two are much closer to each other then Voigt and Reuss bounds in equation

𝐶𝑉 =
𝐶11 − 2𝐶12 + 3𝐶44

5
> 𝐺𝐻 > 𝐺𝐻𝑖𝑙𝑙 > 𝐺𝑆 > 𝐺𝑅 =

5

4𝑆11 − 4𝑆12 + 3𝑆44

(26)

8 Hill-Walpole Bounds for Amorphous Systems

Atomistic simulations of amorphous glassy materials are typically performed using periodic cells with lateral
dimensions of no more than a few tens of Angstroms. Moreover, to model accurately and to predict the
expected macroscopic properties of a given material it will often be necessary to sample many distinct real-
izations (i.e. cells), each differing in local packing of atoms. In the case of mechanical properties, computed
6x6 matrices of stiffness or compliance constants may differ quite considerably between cells and each may
be slightly anisotropic, even when the parent material is homogeneous and perfectly isotropic.

An important question confronting modelers seeking to predict mechanical properties and often to quantify
differences between materials, concerns how to combine elastic constants obtained for nanoscopic regions
represented by amorphous cells to define the macroscopic elastic constants as precisely as possible. In-
stinctively, the basic approach involves viewing the macroscopic material as a composite made up of many
distinct domains - i.e. individual cells - embedded in a matrix formed by all other cells.

As well-established in composite theory, the extreme upper and lower bounds of the elastic constants can
then be determined by computing averages of the individual stiffness and compliance matrices. These are the

[10] Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Elastic Behaviour of Polycrystals,” J. Mech. Phys. Solids
10, 343 (1962); On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity, J. Mech. Phys. Solids 10, 355
(1962).
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so-called Voigt and Reuss bounds, which are obtained by assuming that each individual domain is subjected
to the same strain or the same stress respectively.

⟨𝐶⟩𝑉 𝑜𝑖𝑔𝑡 =
1

𝑛

∑︁
𝑖

𝐶𝑖 and ⟨𝑆⟩𝑅𝑒𝑢𝑠𝑠 =
1

𝑛

∑︁
𝑖

𝑆𝑖 (27)

Since in reality neither assumption is rigorously true, these represent extreme bounds, as the forces between
domains in the Voigt average cannot be in equilibrium; likewise the distorted domains in the Reuss average
cannot fit together. It is just the most simplistic estimate of the likely macroscopic properties, though it
has been suggested that simply taking the mid-point of the bounds interval can sometimes provide useful
estimates of the material elastic constants.

In the case of amorphous glassy materials as frequently modeled by a collection of cells containing a
few thousand to a few tens of thousands of atoms, where lateral dimensions range from around 20 to 50
Angstroms, upper and lower bounds calculated in this way typically show large differences. With the goal
of improving the reliability of predictions of the elastic constants of macroscopic samples of material, Suter
and Eichinger [11] accordingly investigated the possibility of obtaining refined bounds estimates from raw
‘amorphous cell’ elastic constant data.

By again proceeding with the analogy with composite models, and taking the view that each domain can
be considered as being embedded within a homogeneous continuum with elastic properties equal to the
average material, these authors applied theory developed earlier by Hill [12] and by Walpole [13] to compute
improved and typically much narrower bounds estimates.

Suter and Eichinger then proceeded to investigate the effectiveness of the approach at ‘predicting’ the elastic
constants of amorphous glassy polystyrene using input data ‘synthesized’ by adding random fluctuations
to actual experimental stiffness coefficients, where the random fluctuations were chosen based on those
observed in typical atomistic simulations. The results essentially demonstrated that the range of the computed
new ‘Hill-Walpole’ bounds was significantly smaller than the difference of the Voigt-Reuss averages, and
consistently closer to the known values used to generate the input data than the midpoint of the Voigt-Reuss
range.

[11] U. W. Suter and B. E. Eichinger, Estimating Elastic Constants by Averaging Over Simulated Structures, Polymer 43, 575 (2002).
[12] R: Hill, Continuum Micro-Mechanics of Elastoplastic Polycrystals, J. Mech. Phys. Solids 13, 89 (1965); A Self-Consistent Mechanics

of Composite Materials, J. Mech. Phys. Solids 13, 213 (1965).
[13] L. J. Walpole, On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-I, J. Mech. Phys. Solids 14, 151 (1966); On

the Overall Elastic Moduli of Composite Materials, J. Mech. Phys. Solids 17, 235 (1969).
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