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1 Introduction

Machine-learned potentials (MLPs) are represented by generic functions containing several dozens or even
hundreds of parameters, i.e., very often a much larger number of parameters than typically defined for most
traditional forcefields. The limited number of descriptors in most traditional forcefields constrains the degree
to which they can match a large training set of material configurations. The smaller the number of atomic
potential parameters, the more computationally efficient it tends to be, but the smaller the configuration
space to which a potential is trained, the more limited is its applicability to material configurations outside
of its training set. The larger parameter spaces represented by MLPs enables them to describe a larger
material configuration space with improved and relatively uniform fidelity, thus maximizing the value of large
training sets such as can be generated with ab initio computational methods. This advantage comes at a
cost. An MLP described by a large parameter set requires correspondingly larger computational efforts both
to develop and to use it. Furthermore, the greater versatility of MLPs, and a functional form amenable to
automated optimization methods, requires that one abandons older functional forms in which the individual
terms in the potential claim independent physical meaning such as Coulomb and Van der Waals interactions.
Only the entire MLP taken as an integral whole has physical meaning. This fact implies that an MLP optimized
on a particular training set of material configurations is different from any other MLP optimized on any different
training set or optimized with different fitting criteria. Adding a new structural configuration, or a new alloy
constituent, or changing the fitting criteria, requires an entirely new fit.

The overall workflow of most MLP approaches consists of two, sometimes iterative steps, namely,

• The generation of a large dataset of atomic structures and the associated energies, forces, stress
tensors, and possibly other properties as arising from DFT calculations.

• The generation of the MLP in terms of an efficient and appropriate set of atomic structure descriptors
by determining the open parameters of that description through fitting to the DFT data. This second
step is best captured by the formula 𝑌 = 𝑓(𝑋;𝜔), where 𝑋 denotes the set of atomic descriptors of
the atomic structures, 𝑌 is the set of properties to be matched by the fitting process, and 𝜔 represents
additional parameters increasing the flexibility of the approach.

Knowledge from ab initio calculations is reduced in machine-learned potentials to the most fundamental
structure-property relationship. To make this information accessible to machine learning a unique, flexible,
and efficient description of the atomic arrangement in the training set structures is needed. This task is
accomplished by dividing each structure into local spherical clusters centered at a given atom and specified
by a cutoff radius.

Beyond this overarching approach of using local atomic clusters, different schemes have emerged to rep-
resent the resulting local geometries following the requirements of invariance of the representation under
translations, rotations, and permutations.
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Figure1: Illustration of the environment-dependence of atomic energies for a system with periodic boundary
conditions. The energy contribution of the atom in pink depends on the positions of all the atoms within the
dashed sphere that is defined by the cutoff radius Rc of the symmetry functions.

2 Neural Network Potentials

In the neural network schemes these symmetry requirements are satisfied by atom-centered symmetry func-
tions [7]. To ensure that the radial terms of these symmetry functions are zero for all radii 𝑟 larger than the
cutoff radius 𝑟𝐶 a cutoff function such as,

𝑓𝐶 (𝑟, 𝑟𝐶) =

{︃
1
2

[︁
cos
(︁

𝜋𝑟
𝑟𝐶

)︁
+ 1
]︁

for 𝑟 ≤ 𝑟𝐶

0 for 𝑟 > 𝑟𝑐
(1)

or

𝑓𝐶 (𝑟, 𝑟𝐶) =

{︃
tanh3

(︁
1 − 𝑟

𝑟𝐶

)︁
for 𝑟 ≤ 𝑟𝐶

0 for 𝑟 > 𝑟𝑐
(2)

is introduced [7], [8]. With this cutoff function the radial symmetry function 𝐺rad
𝑖 centered on atom 𝑖 is defined

by the sum over all its neighbors 𝑗 within the cutoff radius 𝑟𝐶

𝐺rad
𝑖 (𝑟𝐶 , 𝑟𝑠) =

∑︁
𝑗 ̸=𝑖

𝑓 rad (𝑟𝑖𝑗 , 𝑟𝑠) 𝑓𝐶 (𝑟𝑖𝑗 , 𝑟𝑐) , (3)

with the radial Gaussian function

[7] J. Behler, and M. Parrinello, Generalized Neural-Network Representation of High Dimensional Potential-Energy Surfaces, Phys. Rev.
Lett. 98, 146401 (2007)

[8] M. P. Bircher, A. Singraber, and C. Dellago, Improved Description of Atomic Environments using Low-cost Polynomial Functions with
Compact Support, Mach. learn.: sci. technol. 10, 2632-2153 (2021)
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𝑓 rad (𝑟, 𝑟𝑠) = 𝑒−𝜂(𝑟−𝑟𝑠)
2

. (4)

The width of the Gaussian is defined by 𝜂 and can be shifted by the radial distance 𝑟𝑠. Angular dependencies
can be considered by introducing the angular function

𝑓ang(𝜗, 𝜆, 𝜁) = (1 + 𝜆 cos (𝜗) )
𝜁

, (5)

where the angle 𝜗 is between the lines joining the central atom to any other two atoms within the cutoff radius
𝑟𝐶 of the central atom. The maximum and minimum of this angular function lie at 0 and 𝜋 for 𝜆 = 1. This
is the opposite for 𝜆 = −1. The decay of the angular function with 𝜗 increases with increasing 𝜁. To be
meaningful 𝜁 must be larger than 1. With the angular function defined as in Eq. (5), the narrow angular
symmetry function centered on atom 𝑖 is defined by

𝐺ang,𝑛
𝑖 (𝑟𝐶 , 𝑟𝑠, 𝜆, 𝜁) = 2(1−𝜁)

∑︁
𝑗 ̸=𝑖,𝑘>𝑗

𝑓 rad (𝑟𝑖𝑗 , 𝑟𝑠)𝑓
rad (𝑟𝑖𝑘, 𝑟𝑠) 𝑓

rad (𝑟𝑗𝑘, 𝑟𝑠)

𝑓ang ( 𝜗𝑖𝑗𝑘, 𝜆, 𝜁) 𝑓𝐶 (𝑟𝑖𝑗 , 𝑟𝐶) 𝑓𝐶 (𝑟𝑖𝑘, 𝑟𝐶) 𝑓𝐶 (𝑟𝑗𝑘, 𝑟𝐶) .

(6)

This narrow angular symmetry function considers the interatomic distances 𝑟𝑗𝑘 between atoms 𝑗 and 𝑘 that
span the angle with the central atom 𝑖. In contrast the wide angular form,

𝐺ang,𝑤
𝑖 (𝑟𝐶 , 𝑟𝑠, 𝜆, 𝜁) = 2(1−𝜁)

∑︁
𝑗 ̸=𝑖,𝑘>𝑗

𝑓𝑟𝑎𝑑 (𝑟𝑖𝑗 , 𝑟𝑠)𝑓
rad (𝑟𝑖𝑘, 𝑟𝑠)

𝑓ang ( 𝜗𝑖𝑗𝑘, 𝜆, 𝜁) 𝑓𝐶 (𝑟𝑖𝑗 , 𝑟𝐶) 𝑓𝐶 (𝑟𝑖𝑘, 𝑟𝐶) ,

(7)

does not consider this distance.

Finding a suitable set of symmetry functions is vital for correctly describing the local environments around
each atom. For this purpose, radial symmetry functions are generated on a grid by using the method pro-
posed by Imbalzano et al. [9]. For centered radial symmetry functions, where the radial shift 𝑟𝑠 is zero, the
width of the Gaussians varies with

𝜂𝑚 =

(︃
𝑛

𝑚
𝑛𝑟

𝑟𝐶

)︃2

, (8)

where 𝑛𝑟 defines the number of intervals chosen and 𝑚 = 0, 1, . . . , 𝑛𝑟. Alternatively, a set of 𝑛𝑟 shifted radial
symmetry functions can be defined with the radial shift,

𝑟𝑠,𝑚 =
𝑟𝑐

𝑛
( 𝑚

𝑛𝑟
)

𝑟

, (9)

and the Gaussian widths

𝜂𝑠,𝑚 =
1

(𝑟𝑠,𝑛𝑟−𝑚 − 𝑟𝑠,𝑛𝑟−𝑚−1)
2 . (10)

Thus, the generated symmetry functions are narrow close to the central atom and become wider with in-
creasing distance from the center (see figure below).

Such a grid based spacing can also be applied to the radial terms of the angular symmetry functions using
the approach by Gastegger et al. [10]. In this approach the distance ∆𝑟 between the points on a grid from 𝑟0
to 𝑟𝑛 consisting of 𝑛𝑎 points is obtained with

∆ 𝑟 =
𝑟𝑛 − 𝑟0
𝑛𝑎 − 1

. (11)

In the case of centered Gaussian functions 𝑟low is set to the lower bound, 𝑟𝑛 to (𝑟𝐶 − 0.5) and all shift radii
are set to zero. The widths of the Gaussians are defined by

𝜂𝑖 =
1

2 (𝑟low + 𝑖 ∆ 𝑟)
2 . (12)

Shifted angular symmetry functions have the radial terms shifted by

[9] G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, and M. Ceriotti, J. Chem. Phys. 148, 241730 (2018)
[10] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marquetand, J. Chem. Phys. 148, 241709 (2018)
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Figure2: Example of radial symmetry functions generated with 𝑛𝑟 = 5 and 𝑟𝑐 = 6 Å using the scheme of
Imbalzano et al. [9]. The blue curves show the centered symmetry functions, i.e., with 𝑟𝑠 = 0, and 𝜂 varying
as described in Eq. (8). The red curves show shifted symmetry functions with 𝑟𝑠 as described by Eq. (9).
and 𝜂 as described by Eq. (10). The black dashed line indicates the cutoff function for 𝑟𝑐 = 6 Å.

𝑟𝑠,𝑖 = 𝑟low + 𝑖 ∆ 𝑟 (13)

and the widths described by

𝜂 =
1

2∆ 𝑟2
. (14)

This structured approach allows for a straightforward and reliable definition of the symmetry functions de-
pending only on a set of parameters.

Once the geometry of the atomic neighborhood within each local cluster has been uniquely specified using
the symmetry function descriptors of Equations (3), (6) and (7), development of the MLP proceeds by repre-
senting the total energies in terms of these descriptors. In the neural-network approach proposed by Behler
and coworkers the total energy is given by Eq. (15) [7], [1], [2], [3], [4], [5], [6] . The rationale behind this
equation is sketched below which illustrates the use of Equation (15) in terms of a procedure applied to the
symmetry functions, i.e., the local descriptors 𝐺𝑖, moving from left to the right in the figure. At each level, a
linear combination of the input quantities (the local descriptors 𝐺𝑖 are used at the initial level) is first calcu-
lated using parameters 𝑎 and 𝑏. Then a non-linear activation function 𝑓 is applied to this linear combination.
Common choices for activation functions are sigmoid functions, hyperbolic tangents, Gaussians, or simple
linear functions. This procedure is convenient for recursion yielding a total energy value. If this value agrees

[1] J. Behler, First Principles Neural Network Potentials for Reactive Simulations of Large molecules and Condensed Systems, Angew.
Chem. Int. Ed. 56, 12828 (2017); Angew. Chem. 129, 13006 (2017)

[2] J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural networks, J. Chem. Phys. 134, 074106
(2011).

[3] J. Behler, Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations, Phys. Chem. Chem. Phys. 13,
17930 (2011).

[4] J. Behler, Representing potential energy surfaces by high-dimensional neural network potentials, J. Phys.: Condens. Matter 26,
183001 (2014)

[5] J. Behler, Constructing High-Dimensional Neural Network Potentials: A Tutorial Review, Int. J. Quant. Chem. 115, 1032 (2015)
[6] J. Behler, Perspective: Machine learning potentials for atomistic simulations, J. Chem. Phys. 145, 170901 (2016), J. Chem. Phys.

145, 219901 (2016)

v. 3.6 Copyright © 2022 Materials Design, Inc., All rights reserved.
Materials Design® and MedeA® are registered trademarks of Materials Design, Inc.

12121 Scripps Summit Dr., Ste 160 San Diego, CA 92131

4 of 7



D
O

C
U

M
E

N
TA

TI
O

N
MedeA Documentation

with the ab initio result for the training set to within the user-selected tolerance, the procedure is considered
converged. Otherwise, it is repeated with improved guesses for the parameters 𝑎 and 𝑏. These improved
guesses can be generated from simulated annealing, genetic algorithms, Levenberg-Marquardt, multi-stream
Kalman filters [11] or related optimization algorithms. The robustness of neural network methods is widely
documented, having been applied in diverse contexts to a variety of complex problems such as speech and
pattern recognition. Neural networks can be used to approximate any kind continuous function [13], [14], [15]
and are thus highly adaptable to reproduce complex energy hypersurfaces. With the specification of the local
descriptors 𝐺 by Equations (3), (6), and (7) and their use in Eq. (15) where the energy for atom 𝑖 is calculated,
the power of neural networks becomes accessible to atomistic simulations.

𝐸𝑖 = 𝑓

⎛⎝𝑏31 +

3∑︁
𝑘=1

𝑎23𝑘1𝑓

⎛⎝𝑏2𝑘 +

3∑︁
𝑗=1

𝑎12𝑗𝑘𝑓

(︃
𝑏1𝑗 +

2∑︁
𝑖=1

𝑎01𝑖𝑗 𝐺𝑖

)︃⎞⎠⎞⎠ (15)

The total energy is simply the sum of the atomic energies Eq. (15) over all 𝑁at atoms,

𝐸pot =

𝑁at∑︁
𝑖

𝐸𝑖 . (16)

In turn the atomic forces 𝐹𝑖 are obtained by applying the chain rule [11] ,

𝐹𝑖 = −∇⃗𝑖𝐸 = −
𝑁at∑︁
𝑗=1

∇⃗𝑖𝐸𝑗 = −
𝑁at∑︁
𝑗=1

𝑁SF
𝑗∑︁

𝑘=1

𝜕𝐸𝑗

𝜕𝐺𝑗,𝑘
∇⃗𝑖𝐺𝑗,𝑘, (17)

with 𝑁SF
𝑗 for the number of symmetry functions used to describe atom 𝑗.

Figure3: Schematic structure of a feed-forward neural network defining the functional relationship between a
two-dimensional input vector 𝐺 = (𝐺1, 𝐺2) that describes the atomic configuration and the potential energy
𝐸.

Neural network potentials are generated in MedeA by the Machine-Learned Potential Generator using the
n2p2 code by Singraber et al. [11] with the weights and biases of the neural network composed of two hidden

[11] A. Singraber, T. Morawietz, J. Behler, and C. Dellago, Parallel Multistream Training of High-Dimensional Neural Network Potentials,
J. Chem. Theory Comput. 15, 3075-3092 (2019)

[13] K. Hornik, Neural Netw. 4, 251-257 (1991)
[14] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Neural Netw. 6, 861-867 (1993)
[15] A. Kratsios, The Universal Approximation Property, Ann. Math. Artif. Intell. (2021).
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layers, each containing a user definable number of neurons, optimized utilizing a Kalman filter fading memory.
The thus generated NNP can then be used in MedeA with the n2p2 LAMMPS interface [12].

3 Spectral Neighbor Analysis Potentials

An alternative scheme put forward by Bartok and coworkers expresses the atomic arrangement within each
local cluster in terms of the density of the atoms as given by Eq. (18) [16], [17]. In this approach, the 𝛿-
distribution selects the neighboring sites within the local environment. (Within the soft overlap of atomic
positions (SOAP) approach, each 𝛿-distribution is replaced by a Gaussian distribution to make the density
a smoothly varying function). The density could then be expanded in a spherical harmonic basis set as
sketched in Eq. (19) [1,2]. However, a direct expansion in spherical harmonics would not be invariant under
rotations. This problem is solved by introducing a “bispectrum” of spherical harmonics, which is rotationally
invariant but nevertheless includes all the angular information contained in the material configurations being
described [16] [17] . In addition, the radial dependence of the atomic density within each cluster is encoded
in terms of a fictitious “angle” 𝜃0, which enables one to represent the atomic density as an expansion over the
mathematically complete set of four-dimensional spherical harmonics, with 𝜃 and 𝜑 being the usual angles,
and 𝜃0 holding the radial information scaled to the cutoff radius divided by 𝜋. For a given atom distribution
within a local cluster, this four-dimensional representation of the density is thus fully specified by the co-
efficients 𝑢𝑗

𝑚,𝑚′ entering Eq. (19). Finally, this representation may be transformed to one in terms of the
bispectrum coefficients 𝐵 as given by Eq. (20), which carry all the information about atomic distributions nec-
essary for constructing MLPs. In Eq. (20), the 𝐶 ’s are the familiar Clebsch-Gordan coefficients representing
the integrals of products of three-dimensional spherical harmonics with their complex conjugates. In passing
it should be noted that Eqs. (3), (6), (7), and (20) are alternative but equivalent complete specifications of the
structures entering the training set that depend only on the relative coordinates within each atomic cluster.
As such, both representations are invariant under translations, rotations, and permutations.

𝜌𝑖(𝑟) = 𝛿(𝑟) +
∑︁

𝑟𝑖𝑗<𝑟𝑐

𝑓𝑐(𝑟𝑖𝑗) · 𝑤atom
𝑗 · 𝛿(𝑟 − 𝑟𝑖𝑗) (18)

𝜌𝑖(𝑟) =

∞∑︁
𝑗=0

𝑗∑︁
𝑚,𝑚′=−𝑗

𝑢𝑗
𝑚,𝑚′𝑈

𝑗
𝑚,𝑚′ (𝜃, 𝜑, 𝜃0) . (19)

𝐵𝑗1,𝑗2,𝑗 =

𝑗1∑︁
𝑚1,𝑚′

1=−𝑗1

𝑗2∑︁
𝑚2,𝑚′

2=−𝑗2

𝑗∑︁
𝑚,𝑚′=−𝑗

(︁
𝑢𝑗
𝑚,𝑚′

)︁
𝐶𝑗𝑚

𝑗1𝑚1𝑗2𝑚2
× 𝑢𝑗𝑚′

𝑗1𝑚′
1,𝑗2𝑚

′
2
𝑢𝑗1
𝑚′

1,𝑚1
𝑢𝑗2
𝑚′

2,𝑚2
(20)

Once the bispectrum coefficients are determined, the total energies and forces calculated for the structures
of the training set are written as a sum over atoms in terms of these coefficients as given by Eq. (20) [16] [17].
Again, starting from initial guesses, the parameters 𝛽 are then varied until the total energy determined from
these values agrees with the value arising from the corresponding ab initio calculation to a specified accu-
racy. Eventually, this procedure leads to the Gaussian Approximation Potential (GAP), which was originally
proposed by Bartók and coworkers and uses Bayesian regression to determine the parameter values [16].

𝐸SNAP =

𝑁∑︁
𝑖=1

𝛽𝛼𝑖
0 +

𝑁∑︁
𝑖=1

∑︁
𝑘={𝑗,𝑗1,𝑗2}

𝛽𝛼𝑖

𝑘 𝐵𝑖
𝑘 (21)

𝐹 𝑗
SNAP = −

𝑁∑︁
𝑖=1

𝛽𝛼𝑖
𝜕𝐵𝑖

𝜕𝑟𝑗

In contrast, the SNAP potential as introduced by Thompson et al. [17], [19], while using the same represen-
tation of the local neighborhoods as GAP, seeks to determine the parameters 𝛽 from linear regression rather

[12] A. Singraber, J. Behler and C. Dellago, Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials, J.
Chem. Theory Comput. 15, 1827-1840 (2019)

[16] A. P. Bartók, M. C. Payne, R. Kondor and G. Csányi, Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics,
without the Electrons, Phys. Rev. Lett. 104, 136403 (2010)

[17] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles and G. J. Tucker, Spectral neighbor analysis method for automated generation
of quantum-accurate interatomic potentials, J. Comput. Phys. 285 316-330 (2015)

[19] A. Thompson, SNAP: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials for
LAMMPS, talk given at the LAMMPS Users’ Workshop and Symposium, August 2015
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than Gaussian process regression. This choice offers distinct advantages. In particular, according to the au-
thors this step makes the fitting process more robust and it decouples the speed of molecular dynamics from
the size of the training set thereby facilitating application of the MLP. Linear regression also accommodates
larger training sets, and finally, it enables straightforward sensitivity analysis.

In practice, the generation of SNAP potentials proceeds along the following path:

1. A training set of structures is built and used to compute total energies, forces, and stress tensors from
ab initio calculations.

2. The local environment of each atom in each structure is represented via the 4D spherical harmonics
expansions in terms of the bispectrum coefficients 𝐵, which take the role of local structural descriptors.

3. Linear regression is used to obtain the coefficient values 𝛽 entering the expansion of the total energy
in the local structural descriptors 𝐵.

4. Finally, hyper-parameters such as the number of structure descriptors, cutoff radii of the local atomic
clusters, and weights of the atomic types are optimized using a numerical package such as the DAKOTA
software or any other optimization code such as the NEWUOA code by Powell [20], which adopted in
the present context.

A similar approach is used within the Machine-Learned Potential Generator implementation in MedeA, which
likewise employs the FitSNAP code, but uses MedeA VASP for the training set calculations and Powell’s
Derivative-Free Optimization solvers for the optimization of the hyper-parameter values in an outer loop,
namely, the relative cutoff radii and weights for the atom types.

[20] M. J. D. Powell, The NEWUOA software for unconstrained optimization without derivatives. In: G. Di Pillo and M. Roma (eds),
Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications 83 (Springer, Boston 2006)
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